
## Single-Stub Tuning

The goal is to find d and l as shown in the figure.



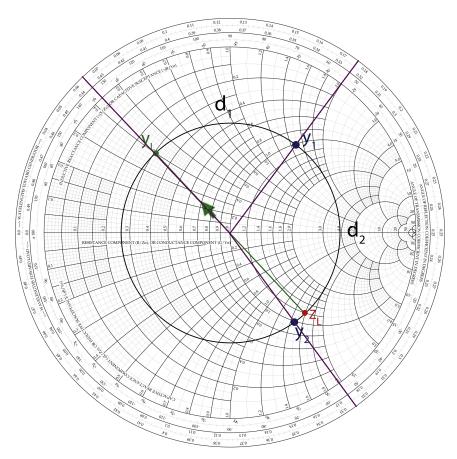
$$Z_L = 60 - j80 \ \Omega.$$

- Step 1: Plot normalize load impedance  $z_L = 1.2 j1.6$ .
- Step 2: Draw the SWR circle.
- Step 3: Convert  $z_L$  to admittance  $y_L$ .
- Step 4: The SWR circle intersects 1 + jb circle at two points  $y_1$  and  $y_2$ .
- Step 5: Find the distance d from the load to the stub by reading the wavelengths toward the generator scale.

$$d_1 = 0.176 - 0.0065 = 0.110\lambda,$$

$$d_2 = 0.325 - 0.0065 = 0.260\lambda.$$

Now the admittance at this new points can be calculated as follows


$$y_1 = 1 + j1.47,$$

$$y_2 = 1 - j1.47.$$

Hence to tune these solutions with a short circuit single stub a susceptance of -j1.47 is required for the first solution and similarly a susceptance of j1.47 is needed for the second solution.

The length of the short-circuited stub then can be found by starting at  $y=\infty$  and moving along the chart toward the generator to the -j1.47 and j1.47 for the first and second solution respectively.

In this manner  $l_1 = 0.095\lambda$ , and  $l_2 = 0.405\lambda$ .



Step 1 Step 2 Step 3 Step 4 Step 5